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Abstract 

 Numerical techniques are powerful tools for solving the partial differential 

equations. A few problems can be solved analytically as well as difficult boundary value 

problems can be solved by numerical methods easily. A numerical method known as 

finite difference methods (explicit, fully implicit and Crank-Nicolson schemes) is applied 

for solving the heat equations successfully. In this paper, the solutions of finite 

difference methods are presented in tables together with figures comparing the 

analytical solution. 

Keywords: Finite difference methods, Local truncation error, boundary condition, 

stability and convergence. 

 

1. Introduction 

 The most common finite difference representation of derivative is based on Taylor's series 

expansions. The heat equation is fundamental in scientific fields. There are derivatives with 

respect to time and derivatives with respect to space in the heat equation.  

 The main objective of this paper is to study the effect of explicit, fully implicit and Crank-

Nicolson schemes on one dimensional heat equation with initial-boundary condition. In explicit 

scheme, U at all grid points at time level j + 1 are calculated from the known value at time level j 

by the boundary conditions. Subsequently, fully implicit scheme and Crank-Nicolson scheme are 

solved by using MATLAB. Moreover, the Crank-Nicolson scheme can be obtained from the 

average of the explicit and fully implicit schemes. The numerical results are compared with the 

analytical solution. Finally, convergence, stability and discretization errors are presented for 

different schemes.  
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2. The Concept of a Taylor Series

 
Figure1. Discrete grid points 

 If i, ju  denote the t-component of velocity at point (i, j) , then the velocity i, j+1u  at point 

(i, j +1) can be expressed in term of a Taylor series expanded about the point (i, j)  as follow. 
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By Taylor's series expansion, 
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i, j+1 i, ju -uu
= + O t)

t t
,  (First-order forward difference in time) 

  (



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i, j i, j-1u -uu
= + O t)

t t
, (First-order backward difference in time) 

  (



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i, j+1 i, j-1 2u -uu
= + O t)

t 2 t
 (Second-order Central difference in time) 

and  ( .
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


 

2
i-1, j i, j i+1, j 2

2 2

u - 2u +uu
= + O x)

x x)
(second-order Central second difference in space) 

 The terms (O t) , ( 2O t)  and ( 2O x)  are denoted by the local truncation errors. When 

the local truncation errors are being neglected, finite difference schemes are obtained. 

 

3. Explicit Scheme 

 
Figure 2. The explicit stencil 
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 The one-dimensional heat equation is considered as: 

   



U
t

=
x





2

2

U .  (1) 

 Using forward difference at time and a second order central difference in space, the 

following equation is obtained, 

  
( 

i, j+1 i, j i-1, j i, j i+1, j
2

u -u u - 2u +u
=

t x)
 

which can be written as 

   i, j+1 i-1,j i, j i+1,ju = ru +(1- 2r)u +ru   (2) 

where 
(



 2

t
r =

x)
. 

 This explicit method is known to be numerically stable and convergent whenever 
1

r
2

. 

The numerical errors are proportional to the time step and the square of the space step.  In this 

method, the state of a system at a later time from the state of the system at the current time can 

be calculated. Therefore, explicit scheme is very simple. 

 

4. Fully Implicit Scheme 

 
Figure 3. The fully implicit stencil 

 Substituting the backward difference at time and second order central difference in 

space, we get 

    
( )


 

i, j+1 i, j i-1, j+1 i, j+1 i+1, j+1
2

u -u u - 2u +u

t x
. 

We can obtain i, j+1u  from solving above equation 

   i-1, j+1 i, j+1 i+1,j+1 i, j-ru +(1+ 2r)u -ru = u   (3) 

where 
(



 2

t
r =

x)
. 

 


i, j

i, j +1 i +1, j +1i -1, j +1
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 This scheme is called fully implicit scheme. The scheme is always numerically stable and 

convergent but usually more numerically intensive than the explicit scheme. The errors are linear 

over the time step and quadratic over the space step. 

 In order to obtain the function values at time step (j +1) need to solve a set of 

simultaneous linear equations (3), which can be cast in matrix form as 

  

    
    
    
    
    
    
    
    

          

1, j+1 1, j

2, j+1 2, j

3, j+1 3, j

4, j+1 4, j

5, j+1 5, j

6, j+1 6, j

u u1 + 2r -r 0 0 0 0
u u-r 1 + 2r -r 0 0 0
u u0 -r 1 + 2r -r 0 0

=
u u0 0 -r 1 + 2r -r 0
u u0 0 0 -r 1 + 2r -r
u u0 0 0 0 -r 1 + 2r

. 

5. Crank-Nicolson Scheme 

 
Figure 4. The Crank-Nicolson stencil 

 If 




U
t

 is replaced by forward difference approximation and 
x





2

2

U
 by average of central 

difference in space at j and j+1 time level in (1),  

  
( (

 
     

i, j+1 i, j i+1, j+1 i, j+1 i-1, j+1 i+1, j i, j i-1, j
2 2

u -u u - 2u +u u - 2u +u1
t 2 x) x)

 is obtained. 

It can be written as 

  i-1, j+1 i, j+1 i+1,j+1 i-1,j i, j i+1,j-ru +(2+ 2r)u -ru = ru +(2- 2r)u +ru  (4) 

where 
(



 2

t
r =

x)
. 

 This scheme is always numerically stable and convergent. The errors are quadratic over 

the time step as well as the space step. The Crank-Nicolson method is combined from the 

average of the explicit and fully implicit schemes. 

5.1 Example 

 The heat equation 




U
t

=
x





2

2

U
 is considered with the initial condition U(x,0) = sin x,

 0 x 1  and  boundary conditions are U(0,t) =U(1,t) = 0 .  

 

 

i -1, j +1 i, j +1 i +1, j +1

i, ji -1, j i +1, j



 

5 

 

 By solving this problem, it is easily obtained that the exact solution of the problem is      
2- tU(x,t) = e sin x . 

It is considered as x = 0.1 , t = 0.005. 

So 
(



 2

t 0.005
r = = = 0.5

0.01x)
. 

Therefore, stability condition of explicit finite scheme is satisfied and a stable condition is 

expected. 

By using boundary condition, 0,j 0, j+1u = 0,u = 0   and n,j n, j+1u = 0,u = 0  are obtained. 

Using the initial condition when t=0 and  0 x 1 , it is obtained as  

0,0u = sin 0 = 0,  1,0u = sin( 0.1) = 0.3090,  2,0u = sin( 0.2) = 0.5878,  3,0u = sin( 0.3) = 0.8090,   

4,0u = sin( 0.4) = 0.9511,  5,0u = sin( 0.5) = 1 . 

By symmetry, 6,0 4,0u = u ,  7,0 3,0u = u ,  8,0 2,0u = u ,  9,0 1,0u = u  and 10,0 0,0u = u . 

By using the boundary and initial conditions, the solutions of explicit scheme can be found.  

Substituting r = 0.5 in (2), the explicit method is 

  i, j+1 i-1,j i+1,ju = 0.5u + 0.5u . 

For i=1, j=0,  1,1 2,0u = 0.5u = 0.2939 , 

for i=2,  j=0, 2,1 1,0 3,0u = 0.5u + 0.5u = 0.5590 , 

for i=3, j=0, 3,1 2,0 4,0u = 0.5u + 0.5u = 0.7694 , 

for i=4, j=0, 4,1 3,0 5,0u = 0.5u + 0.5u = 0.9045 , 

for i=5, j=0, 5,1 4,0 6,0u = 0.5u + 0.5u = 0.9511 , 

for i=6,j=0, 6,1 5,0 7,0u = 0.5u + 0.5u = 0.9045 . 

The fully implicit tri-diagonal matrix that are substituted by r=0.5, j=0 in (3)  is 

 

    
    
    
    
    
    
    
    

        

1,1

2,1

3,1

4,1

5,1

6,1

u2 -0.5 0 0 0 0 0.3090
u-0.5 2 -0.5 0 0 0 0.5878
u0 -0.5 2 -0.5 0 0 0.8090

=
u0 0 -0.5 2 -0.5 0 0.9511
u0 0 0 -0.5 2 -0.5 1.0000
u0 0 0 0 -0.5 2 0.9511

. 

The solutions of fully implicit scheme by solving above matrix are 

1,1u = 0.2946, 2,1u = 0.5604, 3,1u = 0.7713, 4,1u = 0.9067, 5,1u = 0.9535, 6,1u = 0.9071 . 
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Substituting r = 0.5, j = 0 in (4), we get the Crank-Nicolson tri-diagonal matrix form as  

    
    
   
   
   
   
   
   

       

1,1

2,1

3,1

4,1

5,1

6,1

u3 -0.5 0 0 0 0 1 0.5 0 0 0 0
u-0.5 3 -0.5 0 0 0 0.5 1 0.5 0 0 0
u0 -0.5 3 -0.5 0 0 0 0.5 1 0.5 0 0

=
u0 0 -0.5 3 -0.5 0 0 0 0.5 1 0.5 0
u0 0 0 -0.5 3 -0.5 0 0 0 0.5 1 0.5
u0 0 0 0 -0.5 3 0 0 0 0 0.5 1

 
 
  
  
  
  
  
  
   

0.3090
0.5878
0.8090
0.9511
1.0000
0.9511

 

 By solving the above matrix, the solutions of Crank-Nicolson scheme are 

1,1u = 0.2943, 2,1u = 0.5597, 3,1u = 0.7704, 4,1u = 0.9056, 5,1u = 0.9523, 6,1u = 0.9057 . 

    Table 1   Comparison of Finite Difference Schemes at t = 0.005 

x Explicit Fully Implicit Crank-Nicolson Exact 

0.1 0.2939 0.2946 0.2942 0.2941 

0.2 0.5590 0.5604 0.5597 0.5595 

0.3 0.7694 0.7713 0.7704 0.7701 

0.4 0.9045 0.9067 0.9056 0.9053 

0.5 0.9511 0.9535 0.9523 0.9518 

0.6 0.9045 0.9071 0.9057 0.9053 

 

 
Figure 5. Comparison of finite difference schemes 
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6. Result and Discussion 

 Sometimes differential equations are very difficult to solve analytically or models are 

needed for computer simulations. In these cases finite difference methods are used to solve the 

equations instead of analytical ones. 

 Finite difference methods are numerical methods for solving differential equations by 

approximating them with difference equations in which finite differences approximate the 

derivatives. 

 For example, in electronics and electrical engineering the differential equations describing 

complex circuits containing capacitors, inductors and resistors can be replaced with finite 

difference equations. Computer simulations of the models are used to estimate voltage and 

currents in the nodes of the circuit. 

 

Table 2  Percentage errors for finite difference schemes at t=0.005 

x 
Explicit 

% error 

Fully Implicit 

% error 

Crank-Nicolson 

% error 

0.1 0.0680 0.1700 0.0340 

0.2 0.0894 0.1609 0.0357 

0.3 0.0909 0.1558 0.0390 

0.4 0.0884 0.1786 0.0331 

0.5 0.0736 0.1786 0.0525 

0.6 0.0884 0.1988 0.0442 
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Figure 6. Convergence plots of Finite difference schemes 

Conclusion 

 The aim of this paper is to compare finite difference schemes. Comparing with the 

analytical results, the best approximate solution is given from Crank-Nicolson method. Similarly, 

the solutions of wave equations and Laplace equations can be found by using Crank-Nicolson 

method. 
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